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Abstract—It is known that the physical quantities form, in algebraic sense, aninfinite free abelian group.
It is shown in this paper, that the dimensionless quantities of a given system form a finite free abelian
group. It follows from this statement, that any element of the group may be obtained in the form of
a whole exponent power product. The members of this power products are called basic elements. A
new logical systematization of the dimensionless quantities by the group theory was possible.

The main results of this systematization are as follows:
1. The number of basic elements is identical with the degrees of freedom.

2. Any arbitrary proceeding in determination of the basic dimensionless quantities is eliminated,
as the determination of the question, how many basic criteria there are and which may be these,
is made according to exact instructions.

3. It is possible to explain the relations among the dimensionless quantities, namely it can be
determined, that how many dimensionless quantities are included into the relation and which are
these quantities.

Examples are given in the determination of the criteria of scaling-up. The basic equations in chemical
engineering are discussed.

NOMENCLATURE a, exponent, equations (4), (5), (I1)
A o s and (13);
a e heat diffusivity (m?/h); a, heat-transfer coefficient (kcal/mh
. . degree);
trat f > .
¢ g’;;xgl}cen ration of component ! b, exponent, equations (12) and (13):
Cp- specific heat (kcal/kg degree); B, Cg.lm.P o?ent,h '(mass-transfer) co-
d. characteristic length (or diameter) efficient (m/h); .
(m): Y- momentum transfer coefficient
D, diffusivity (m?/h); :f o kg/m? h);
7, friction factor; 2 (kg/m* h);
F, degree of freedom; A, thermal conductivity (kcal/m h
AH. molar heat of reaction (kcal/mol); degree);
2 pressure (kg/m s%); . Vi, stoichiometric coefficient;
p. number of basic criteria, equations y, kinematic viscosity (m2/h);
(5) and (6); , dynamic viscosity (kg/m h);
r, rate of reaction (mol/m? h); o, density (kg /m3);
Lo . . w, interfacial area per unit volume
r' = -, rate of reaction referred to unit (m2/m®).
¢ time (1/h);
T, temperature (grade); THE use of dimensionless quantities is widespread
t time (h); in the engineering practice. Chemical engineering
v, linear flow velocity (m/h); forms no exception. This is due on the one hand
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to the fact that often rather intricate relations
between several variables can simply be charac-
terized numerically by a dimensionless quantity.
Beyond this point of view, which is actually one
of convenience only, the formation of dimension-
less quantities, i.e. of the ratio of quantities with
identical dimensions, essentially means measure-
ment. It is known that ordinary measuring is a
comparison: the quantity to be measured is
compared with a conventional (standard) quan-
tity, i.e. with the unit. When a dimensionless
quantity is formed, the quantity to be measured
is compared with a characteristic quantity of the
system, having the same dimension, instead of
comparing it with a conventional unit. The
formation of dimensionless quantities is there-
fore called the introduction of eigen measure.
For example, every cylindrical body is character-
ized by its length (/) referred to its diameter
(d) as a unit, i.e.

1
;i == €, (13,)

Another well known example is the Reynolds
number

(ib)

which represents the ratio of convective and
conductive momentum streams. As it is known,
it was essential to recognize that the transition
from laminar into turbulent flow characteristics
does not depend on the absolute values of the
convection or conduction momentum streams
themselves, but on their ratio, i.e. on the Re
number. Thus the dimensionless quantity is a
scale number.

The formal systematization of dimensionless
quantities is done on the basis of their formation.
According to this, there are:

1. Simple or simplex dimensionless quantities
(1a).

2. Compound or complex dimensionless
quantities (1b).

3. Dimensionless
character.

The aim of this paper is to show the possibility
of another systematization of dimensionless

quantities of efficiency

ANTHONY LASZLO

quantities, on the basis of the relations among
the dimensionless quantities, furnishing there-
fore information on the correlations between
them. This systematization is done by means of
the algebraic group theory.

1t has been proved by Fleischmann [1] that
the physical quantities form an infinite, free
abelian group. This means that.the criteria
required from a group as an algebraic structure
are fulfilled by the physical guantities. Only
three of these criteria will be dealt with here,
which are absolutely necessary for the under-
standing of the following,

1. A group is a (non-empty) set, S, among the
elements of which there exists a relation (usually
written as a multiplication), and this orders
unambiguously to the element pair 4, B of set S,
an element C of the set:

AB = C (2)

C is called the product of 4 and B.

II. The multiplication conceived in this way
is commutative in the case of physical quantities.
Therefore

AB = BA. 3)

The groups which fulfil the criterion (3) are
called commutative or abelian groups.

11I. It can be shown [2] that any element of the
free abelian group may be obtained as a product
of a finite number of whole exponent generators:

XY =CuCy. . Co=11Cn. (4

i=1

Among the generators, there are preferred
sets which contain the maximum number of
independent elements, and consist, at the same
time, of the minimum number of generators. These
specific sets of generators are called bases. Out
of the elements C; in relation (4), p elements are
selected, where p < ¢, and marking these selected
elements by B, any element of the group may be
obtained by these in the form of a power product,
where the exponent is a positive or negative
whole number, or zero:

P
X =B"B:... B> =115 (5)
i=1
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The word “free” in the term free abelian group
means that the generators are independent of
each other, and no equation—restriction—
exists between these clements. It is a logical
consequence of this and has also been proved in
detail [3] that the number of basic components,
p, is identical with the degree of freedom, F, i.c.

(6

where N is the number of all the elements, and
M the number of equations (restrictions).

The term “degree of freedom” is used in the
sense as first conceived by Gilliland and Reed [4].
Thus it represents the number of those inde-
pendent variables which can be “selected freely”
by the engineers, and the system will be defined
unambiguously by fixing their values. The re-
maining variables, the number of which is A,
are defined by M relations valid in the system.
It will be seen subsequently, that the group theo-
retical treatment presented here does not only
furnish the number of the independent variables
to be selected freely by means of the identity
p = F, but it can also be shown by this treatment
which of the system variables may be chosen
freely.

If in the infinite sphere of physical quantities
we restrict our investigations to a system in
physicochemical sense, i.e. to a set of elements
limited by a wall of finite dimensions, the number
of the elements (which in our case are physical
quantities) will also be a finite number (N).

Thus the definition of the system is as follows:
A system, has finite dimensions; is limited by a
wall of definite properties; and (just in conse-
quence of the first two restrictions) is a group
which can be completely described by a finite
number of quantities (N elements); It follows
from the above that any system may be con-
sidered as a subgroup of the infinite free abelian
group representing all the physical quantities.
This can be understood as follows:

Should G be the infinite free abelian group
containing a// the physical quantities as elements.
It can be seen directly that N is a part set of G.
Apart from this, the following requirement is
also met by N.

The product of any two elements of N is
included into N. This means. that the set is

p=F=N-—M

closed as regards the multiplication operation.
N being a group itself, it also has a basis. That
abelian group has a basis is a theorem which
can be proved [S].

The dimensionless quantities form a finite,
Jree abelian group, since they are obtained as
ratios of physical quantities, i.e. according to the
Axiom I of group theory as a result of multi-
plication, and because their number is finite as
related to a system.

This subgroup also must have a basis, and as
shown by equation (6), the number of its basic
clements gives the degree of freedom of the
dimensionless system, Of course the basic
elements are also dimensionless in this case. Up
to now the dimensionless basis has been called
a “complete set” in the theory of similitude [6].
It is new, however, in this context that the
number of the elements forming the “complete
set” represents also a degree of freedom [see
equation (6)]. It follows from the conception of
the degree of freedom [3] that if out of the total
number, N, of the variables of the system those
forming a basis are selected, the data required
and sufficient for the wnambiguous description
of the dimensionless system are determined at
the same time. These data are called basic
quantities and in the special case of dimension-
less quantities basic criteria. The practical
importance of the problem rests on this state-
ment, All the basic criteria together also define
a system, which is called the basic system. This
is a fictitious system, since it does not exist in
the physical reality, but the actually existing
system may be expressed by this reduced
fictitious system. Thus the number of the vari-
ables describing the system has been diminished.
This is also of great importance in engineering
practice.

In addition to this, when controlling a system,
or at scaling up, it is not the same how many
parameters are to be considered and which of
these parameters will be, but according to the
above, the parameters should be the basic
criteria.

To illustrate the above arguments, applications
for the three characteristic quantities occurring
in chemical engineering science will be given.
These quantities are: the heat, the momentum
and the masses of chemical components, the
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Table 1
convection transfer __source
conduction convection convection
vd ﬂ vird
t S == Dal = -—
Componen Pe D ; a o
d AHrd
Heat Pe="2 - -t Dall = 02
a pept pcpATe
vd Sy 1 E
Momentum Pe = - = We ™ a2

number of which is k. In the case of stationary
flow, the following three equations hold good

div [pv] — div [D grad ¢;] + wBA¢
+owr=0,i:==12,...,k )

div [pcp Tv)} — div [A grad T] 4+ weAT
4+ wrAH =0 8)

Div {pvev} — Div {n Grad v} + wyAv
+ gradp = 0. )}

Among them the first two equations are the
so called enlarged Damkdhler [7] equations,*
whereas the third one is a somewhat modified
form of the Navier-Stokes equation [8], well
known in fluid mechanics. In every equation
the first term means convection, the second
conduction (diffusion), the third transfer between
two phases and the fourth a source (respectively
a sink, with a negative sign). The above equations
are of course homogeneous dimensionally, i.e.
the dimension of each term is the same, and it has

* It is called enlarged, since the third members (wBAci)
and (waAT) shown here and covering transfer processes
between phases, are not considered in the original equa-
tion by Damkohler. In connection with equation (9), it
must be emphasized that the sign Div with a capital letter
does not represent a simple divergency, because the
guantities in the figure bracket are (secondary) tensors:
the dyadic product of the convective momentum flux
pv and v vectors, denoted by a small circle. Similarly, in
the second term the capital letter “G” expresses the fact
that it is not the gradient-vector of a scalar quantity,
but the gradient-tensor of a vector field (in our case the
velocity field).

the same unit of measurement (quantity/m*h),
within one unit system. If not the values of the
individual terms, but their values related to any
selected term are considered, dimensionless
quantities will be obtained. Let us write these
quantities, e.g. dividing them by a convective
term (see Table 1). In the first case its reciprocal
is taken.

Note: the symbois of the individual quantities
are shown in the table at the end of this paper.
It is to be mentioned also, that in the case of
momentum flow several dimensionless quantities
belong to the last column, since E means force
in a general sense. With E = Apd?, a compressive
force, we get Eu (the Euler number), while with
E = pgd3, gravitational force, Fa (the Fanning
number) is obtained, etc.

In this way, 3 X 3 =9 independent di-
mensionless quantities are obtained for the three
streams. Other dimensionless quantities may
of course be formed from the four members of
the equation, but the number of independent
quantities forming the basis aiways equais
nine. For example, in the 2nd column of Table 2,
instead of (transfer/convection) the dimensionless
quantities Nu’, Nu, and A* (unnamed) may be
formed, corresponding to the ratio (transfer/
conduction). .

With respect to the latter basis, Table 2 shows
the system according to van Krevelen [9],
including all the dimensionless quantities de-
rivable from equations (7), (8) and (9). It can be
seen that his systematization was effected by
group theory, since by means of the basic
criteria shown in the frame, all the other ele-
ments of the group may be obtained according
to equation (5), viz.:
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Table 2. Systematization of dimensionless numbers according to van Krevelen

convection  transfer source transfer source source
conduction conduction convection convection conduction transfer
09 2 3 C)) &) ©) 0]
Com- | , _vd , Bd _rd _ Pe’ , B _rd . _rd
ponent Pe—-—D~ Nu—3 DaI——v Sc——ﬁ St—; DaII—D C——ﬁ
vd ad AHrd Pe a AHrd* ,  AHrd
Heat Pe = - Nu = T Dalll = m Pr = Re St = po DalV = SAT D* = AT
Momen- _od . va 1 E _Sc f . £ «_ E
tum Re=-— A" = 71 We ,)}}:‘EZ Le= Pr 2 " qud E*= vd®Av
St' = Nu' pe'1 Bi = By By+ ... Bov. (1)
St = Nu Pe-! . .
. The theorem applying to the selection of the
f — A% Re-1 basic elements is:
2 Should (B,, B, ... B,) be the basic variables
Dall — Pe' Dal (basic elements) of the system, other (B, B;. ..
atl = e La B,) elements, the number of which is equally p,
DalV = Pe Dalll will be basic variables only in the case if any
basic element B; of the previous basic system
B* = Re We™? ! P y

C* = Pe’ (Nu')~* Dal
D* = Pe Nu=! Dalll
E* = Re (A*)™ We™, (10)

It is a great advantage of the systematization
by group theory that the determination of the
question, how many basic criteria there are and
which: may these be, is made according to exact
instructions. As a matter of fact, one group may
have several bases. In a physical sense it means
that the variables of a system may be obtained
by different basic criteria having always the same
number. In other words, the basic criteria are
interchangeable. In the course of the calcula-
tions, such changes have already been carried
out, but not always in the right way, as will be
shown in the following. The right answer is
given by the group theory and any arbitrary
proceedings are eliminated by it.

According to relation (5), an arbitrary B;
element of the system is now written in the form
of a power product, providing the whole ex-
ponents with double subscripts, where the first
subscript denotes the basis, and the second
subscript is the subscript of the series:

may be obtained from them with different whole
exponents, making

B; = Btn Btn. . Bbo. (12)

The necessary and sufficient condition for
this is, that the determinant formed from both
exponent systems should fulfil the requirement
of the linear independence, i.e. its value should
amount to 1.

Det | aix | = Det | by | = £ 1. (13)

Therefore the elements of a basic system may
be exchanged for other elements only then, if
the new system thus obtained fulfils the restric-
tive equation (13). This means that the basic
systems are equivalent among them. Any element
of the group must be obtainable by any basic
system.

To illustrate this theorem, it will be shown that
the change effected in the second column of
the basis of Table 1 and Table 2 is permitted.
The determinant formed from the exponents of
the two bases may be obtained by employing the
first three correlations of (10), in accordance
with the restrictive equation (13) covering the
condition of linear independence.
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Pe’ Pe Re Nu’
Pe’ 1 0 0 0
Pe 0 1 0 0
Re 0 0 1 0
St -1 0 0 l
St 0 -1 0 0
f2 0 0 -1 0
Dal 0 0 0 0
Dalll 0 0 0 0
We! 0 0 0 0

|
i
|
!

The value of the determinant thus produced is
[. Thus after making the change, the nine ele-
ments together also form a basis.

By means of the group theory, it can therefore
be substantiated why and how the relations
expressed by dimensionless variables may be
obtained in engineering calculations. For ex-
ample, why the well known relation

—_ ivi — 1_V_u (14)

RePr  Pe
is valid. This is a relation according to equation
(5). Similarly, the other fractional exponent
power product relations may be disclosed and
we may say how many dimensionless quantities
are included into the relation and which are
these quantities. The detailed substantiation of
this is, however, too far reaching, and would
require a separate lecture.

In conclusion, a case should be submitted
where the group theoretical treatment gave a
new result. This is the determination of the
criteria of scaling up. It is known that two systems
having different dimensions are completely
similar to one another if the homogeneous linear
relation

St

(15)
is valid for their independent variables. These
variables may be divided into four groups: I.
geometrical, 2. mechanical, 3. thermal, and
4. component determining, i.e. chemical vari-
ables. The variables of the latter three groups are
covered by equations (7), (8) and (9).

According to this classification, there exist
geometrical, mechanical, thermal, and chemical
similitudes.

x' = kx
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Nu A* Dal Dalll We 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
| 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

The geometrical similitude requires that the
characteristic length (d) should be proportional
in the model and the prototype:

dp = K dy. (16)

The mechanical similitude is realized when the
values of the three (framed) basic variables
shown in the last row of Table 2, connected
with momentum conservation, are changed
proportionally. The three basic variables di-
minish to one, if the pressure drop (Ap) in the
system can be neglected, since then the values
A* and We become practically zero. The
mechanical similitude then requires that the Re
numbers in the two systems should be equal. If
the material constants of both systems (a, B, y,
Cpy s Pr A vi, Dy, AH) are identical, the identity
of the Re number in the model and prototype

a7

is simplified to an equality. For systems without
chemical reaction, the thermal and chemical
similitude is included into the conditions (16) and
(17). It does not mean therefore another re-
striction between the variables of the model
and the prototype, since the basic variables
characteristic for the component and heat
streams in columns 1 and 2 of Table 2 (Pe,
Pe, Nu’ and Nu) contain besides the material
constants, the values of which are identified in
the two systems, only the variables v and d.
The situation is considerably more complicated
if a chemical reaction also takes place in the
system. Apart from the pressure drop, two more
basic variables, Dal and Dalll appear. The
thermal similitude is realized in this case only if

vedp = vymdm
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the values of Dalll are identical in the two
systems. Disregarding the material constants,
the two numbers Dalll are equal, if the equality

) _(rd
vAT)p ™ \vAT )M )
holds good.

The condition of the chemical sinulitude is
the equality of the two Dal numbers in the two
systems, which is given by equation

(=

‘The four characteristic variables and the four
restriction equations of the four similitudes are
compiled in Table 3.

(18)

(19)

Table 3
Similitude Characteristic Restricting
variable equation
Geometrical d dp = Kdnr
Mechanical v vedp = vmdyu
( rd . ( rd )
Thermal AT (5&?‘)}’ == m a
Chemical r (rj) = (’E)
v/P v/M

The similitude has therefore no degree of
freedom, since there are four variables and four
equations. This means that if we want to produce
a system similar to a given system, none of the
variables may be selected freely, but all the
variables of the original system must be trans-
formed according to relation (15), i.e. corre-
sponding to exact prescriptions.

On the basis of Damkdhler’s original work [7],
a statement has been spread in the scientific

literature, viz. that at scaling up the criterion of
complete similitude is the identity of the four
Da numbers and that of the Re numbers in the
two systems [10]. As a result of the group theory
investigations, this opinion must be corrected,
and favourably, too, since fewer criteria have
to be taken into account. It is correct to say that
the criteria of complete similitude between two
systems will be according to (16), (17), (18) and
(19).

The proportionality of one characteristic
dimension, the identity of the Re number, the
identity of the Dal number, and the identity of
the Dalll number. As it has been disclosed, only
the Dal and Dalll numbers together belong to
one basic system, the numbers Dall and DalV
can only be written instead of the former
numbers into the similitude condition, but not
together with the Dal and Dalll numbers.

In the opinion of the author, this new systema-
tization by group theory renders the correlations
between dimensionless quantities simpler and
clearer.
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Résumé—On sait que les grandeurs physiques forment au sens de I’algébre un groupe abélien libre infini.
On montre dans cet article que les quantités sans dimensions d’un systéme donné forme un groupe
abélien libre fini. 11 s’ensuit que tout élément du groupe peut étre obtenu sous la forme d’un produit de
puissances entiéres, les éléments de ce produit de puissances sont appelés éléments de base. Une nouvelle
systématisation logique des quantités sans dimensions par la théorie des groupes est possible.

Les résultats principaux de cette systématisation sont les suivants.

1° Le nombre d’éléments de base est le méme que celui des degrés de liberté.
2° On a éliminé tout processus arbitraire de détermination des quantités de base sans dimensions et on
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a déterminé en accord a des instructions exactes la question suivante: combien y a-t-il de critéres de
base et que peuvent-ils étre?

3° Il est possible d’expliquer les relations entre les quantités sans dimensions. Par exemple, il peut étre
déterminé combien de quantités sans dimensions sont en puissance dans les relations et quelles sont
ces quantités.

On a donné des exemples de détermination de critéres de similitude. On a discuté les équations de
base du génie chimique.

Zusammenfassung—Es ist bekannt, dass physikalische Grossen im algebraischen Sinn eine unendlich,
freie Abelsche Gruppe bilden. In der Aubeit wird gezeigt, dass die dimensionslosen Zahlen fiir ein
gegebenes System eine freie Abelsche Gruppe crgeben. Daraus folgt, dass jedes Element der Gruppe
als Potenzprodukt mit ganzzahligen Exponenten erhalten werden kann. Die Glieder dieser Potenz-
produkte werden Grundelemente genannt. Eine neue logische Systematisierung der dimensionslosen
Zahlen wurde durch die Gruppentheorie ermoglicht.

Die Hauptergebnisse dieser Systematisierung sind folgende:

1. Die Zahl der Grundelemente ist identisch mit den Freiheitsgraden.

2. Jedes willkiirliche Vorgehen bei der Bestimmung der dimensionslosen Grundzahlen wird ausgeschal-
tet, da die Fragen, welche und wieviele Grundkriterien vorhanden sind, nach genauen Anweisungen
beantwortet werden kdnnen.

3. Es ist moglich, die Beziechungen zwischen den dimensionslosen Zahlen zu erkliren, da bestimmt
werden kann, welche und wieviele dimensionslose Zahlen von der Beziehung eingeschlossen werden.

Beispiele zur Bestimmung von Massstabsvergrosserungen sind angegeben. Die Grundgleichungen des
Chimie-Ingenieurwesens werden diskutiert.

Angoranua—Xax usBecrHo, usnUeckne BeIMYMHEL anrefpamyeckn ofpasyoT OGeCKOHEUHYIO
cBoGopuyo aleneBy rpynmy. B macrosimeit crarbe IOKasano, 4To Oe3epasMepHBle BeJIMYMHLL
JaHHOIt cucTeMH 00pa3yloT KOHeYHYyI0 cBo0oiHYIo abeneBy rpynmny. M3 sToro ¢axra BeTexaer,
410 00O 27IeMeHT JAaHHOK IPYNNLL MOKHO NOJYYMTh B BH/e NPOM3BEJEHUA CTeleHel XPYTrux
HIEMEHTOB C leIbIMH TOKasaTenxaMu. COMHOMUTENIN, BXOJZALNME B 3TH CTEIEHHHE NpPOUBBe-
HeHMst, Ha3HBAOTCH OasucHEIMN sjeMenTaMu. Ha OcHOBe Teopuu rpynnm BOSMOMKHA HOBAsf
JOrHYeCcKad CHMCTEMATM3AUMA (le3pasMepHBIX BeJIMYMH.
W3 sroii cucTeMaTH3AIMH BLITEKAKOT CIeNYIONMe OCHOBHEIE Pe3yIbTATHI @

. NCA0 VAZUCHBIX JJIEMEHT JOM el cBoOOJEL.
1.4 fa IX DJIeMEeHTOB COBIIAJAET C YUCIOM CTeleHeit cBoGOABI

2. Kaxoe-mu6o 1ponsBosibHoe onpejeliende 0asuCHBIX BeJIWYMH MCKIIOYAETCH, TaK KAk
pelienne BOIpoca 0 TOM, KaKlie KpUTepHU ABIAITCA Ga3HCHEMI 1 CKOJIBKO MX, BBHIIOJIHAETCS
110 TOMHBIM NPABUIIAM.

3. BosMomxkHo oUbaAcHeHUue COQTHOUIENMA MEHIY ()e:;pasmepnbnm BEJINYUHAMM, A MMEHHO .
MOKHO OnpefelnTh, KakHe U CROJBKO 663})333\18[}}{5[}{ BeJIMYHH BRINYAETCA B J([AHHOE CO-
OTHONICHIIE.

ITpuBoasaTes 1ipuMepsl UPeACTABIEHUA KpuTepueB Apyr deped xpyra. Of6cympaorca
OCHOBHHIE YPABHEHNA XUMHYECKON TEXHOJOTHH.



